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A survey of the main results of the Italian group about the logics of unsharp 
quantum mechanics is presented. In particular partial ordered structures playing 
with respect to effect operators (linear bounded operators F on a Hilbert space 

such that g~p ~Jr 0 < (~b tF~b)< [[0 {[2) the role played by orthomodular 
posets with respect to orthogonal projections (corresponding to "sharp" effects) 
are analyzed. These structures are generally characterized by the splitting of 
standard orthocomplementation on projectors into two nonusual orthocomple- 
mentations (a fuzzy-like and an intuitionistic-like) giving rise to different kinds 
of Brouwer-Zadeh (BZ) posets: de Morgan BZ posets, BZ* posers, and BZ 3 posets. 
Physically relevant generalizations of ortho-pair semantics (paraconsistent, regu- 
lar paraconsistent, and minimal quantum logics) are introduced and their rele- 
vance with respect to the logic of unsharp quantum mechanics are discussed. 

1. THE Q U A N T U M  LOGICAL P I O N E E R S :  G. B I R K H O F F  A N D  

J .  V O N  N E U M A N N  

T h e  first s t a t e m e n t  a b o u t  the logic o f  quantum mechanics is f o u n d  in 

v o n  N e u m a n n  (1932) :  " T h e  r e l a t ion  b e t w e e n  the  properties o f  a phys ica l  

sys tem on  the  one  hand ,  and  the  projections on  the  o ther ,  m a k e s  poss ib le  

a sor t  o f  logical calculus with  these" .  S o m e  years  later ,  B i r k h o f f  a n d  y o n  

N e u m a n n  (1936) wen t  deep  in to  this a r g u m e n t ,  a sse r t ing  that :  

It is clear that an observation of a physical system ~ can be described generally 
as a writing down of the readings from various compatible measurements. Thus 
if the [compatible] measurements are denoted by the symbols cq . . . . .  a n, then 
an observation of ~ amounts to specific numbers x ~ , . . . ,  x, corresponding to 
the different ~k. It follows that the most general form of the prediction 
concerning ~ is that 

the point (xt . . . . .  x,) determined by actually measuring (cq . . . . .  c~.) will 
lie in a subset A of (x~,.,. ,x~)-space. 
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Hence, if we call the (x~ . . . .  , x,)-spaces associated with ~, its observation- 
spaces, we may call the subsets of the observation-spaces with any physical 
system ~, the experimental propositions concerning ~. 

[Footnote] One may regard a set of compatible measurements [(~l . . . . .  ~,)] as 
a single composite measurement [(which we denote by A)]--and also admit 
non-numerical readings--without interfering with subsequent arguments. 
Among conspicuous observables in quantum theory are position, momentum, 
energy, and (non-numerical) symmetry. 

Making a little bit more formalized this BvN point of view, the set of 
observables of a physical entity is denoted by (9, the observation space of  an 
observable A~(9 is a measurable space (IK A, ~(KA))  consisting of the 
value-set ~ and a a-algebra ~ ( ~ A )  of observable-subsets of ~A; the set of 
all observation spaces induced by (9 is denoted by ~U((9)..= {(IKA, ~([KA)): 
A~(9}. An experimental proposition is a pair (A,A) consisting of the 
observable A and the measurable subset A of the value-set ~A associated to 
A; this experimental proposition corresponds to the elementary statement 

"val(A) ~A"'.=the value of the observable (physical magnitude) A ~(9 
lies in the subset A ~ ( ~ A )  of the observation space 
of A"  

This agrees with the following quotation of Varadarajan (1962): "The 
center of the stage of the present discussion is occupied by a physical 
system and the experimental propositions that are associated with it . . . .  if 
A is an observable, to each Borel set A of the real line ~ is associated the 
proposition the value of A lies in A". In the literature the "experimental 
proposition" of Birkhoff and von Neumann (1936) and Varadarajan (1962) 
is also called the "physical statement" (Gudder, 1970), "question" (Piron, 
1972), "theoretical sentence" (Bub, 1973), and "elementary statement" 
(van Fraassen, 1974). 

According to Birkhoff and von Neumann (1936), it is important to 
distinguish an experimental proposition by its mathematical representative 
in a suitable concrete mathematical structure; in conventional quantum 
mechanics, "The mathematical representative of any experimental proposi- 
tion is a closed linear subspace of Hilbert space." Owing to the one-to-one 
correspondence between subspaces and orthogonal projections of a Hilbert 
space, an experimental proposition (A, A) can be mathematically realized 
also by an orthogonal projection EA(A) of the Hilbert space ~ .  Let us 
denote by J /{(~)  the set of all subspaces (closed linear manifolds) of Jt ~, by 
# ( ~ )  the set of all orthogonal projections on ~ ,  and by ~: ~ ' ( ~ )  
# ( H )  the mapping associating to every subspace M ~ # ( ~ )  the orthogonal 
projection ~ M ~ # ( ~ )  which projects onto M. An orthogonal projection is 
physically interpreted as an event produced by macroscopic apparatuses 
testing if the answer "yes" of a dichotomic (i.e., "y e s -n o " )  alternative 
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occurs or does not occur. A projector, as an operator on a complex 
separable Hilbert space ~f~, is such that for any vector 0 of ~ ,  0 < 
( 0  lEA(A)0)I]0 ][2, allowing the physical interpretation of the quality 

(O[EA (A)O)-~" 1] p(O, CA(A)),=  tu, 

as the probability of occurrence of the event EA(A)sS(Wf ) for the entity 
prepared in 0 e ~ \ { O } .  The set Yf0. '=~\{O} of all nonzero vectors of the 
Hilbert space is physically interpreted as the set of all preparations of the 
physical entity described by J r .  

1.1. The Empirical Semantic of Quantum Mechanics 

Experimental propositions of the kind (A, A)), (B, A2) . . . .  are sen- 
tences which can be put on the physical entity under examination. For 
instance, "the particle has passed through the slit 1," "the spin of the 
particle along the z direction is up," and so on. Sentences are statements 
which have the property of being sometimes true or false or, in some cases, 
also indeterminate. To this purpose we adopt the following metaphysical 
assumption: The truth values of elementary statements of the sentential 
logic underlying QM must be introduced making use of  only the notions 
available in the concrete mathematical theory of Hilbert spaces. Precisely, 
we introduce two predicate signs, "true" T and "false" F, involving pairs 
consisting of a preparation 0 s Jr0 and an elementary statement r = (A, A) 
according to the following definitions: 

(O,r)T iff P(O, EA(A)) = 1 

(0, r)F iff P(0, EA(A)) = 0 

and a third predicate sign, "indeterminate" U: (0, r)U iff neither (0, r)T nor 
(0, r)F, i.e., iff P(0, EA(A)) ~ 0, 1. Let us notice that whether or not the 
statement r is "true" (resp., "false") depends on the preparation (semanti- 
cal worM) of the physical entity: an elementary statement r is "true" (resp., 
'"false") in preparation 0 iff in this preparation the event E~ (A) (associated 
to r) occurs (resp., does not occur) with certainty, i.e., with probability 1 
(resp., 0). 

It is worth noting that the semantical structure assigned to the proposi- 
tional calculus of QM does not allow of speaking about the fact that: "an 
experimental proposition (A, A) is true (or, false, or indeterminate) for a 
single individual sample (say i) of  the physical system," rather than: "an 
experimental proposition (A, A) is true (or, false, or indeterminate) for any 
individual sample i of the physical entity prepared according to a well- 
defined procedure 0."  Indeed, it is important to distinguish a single test 
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of a question (A, A), which involves an individual sample i of the physical 
entity yielding one of the two possible answers "yes" or "no," from an 
elementary experiment of the same question, which involves a preparation 
~b of individual samples yielding one of the three possible values "true" (if 
the result "yes" is certain in the involved preparation, i.e., probability 1), 
"false" (if the result "no" is certain in the preparation, i.e., probability 0), 
and "indeterminate" (in all remaining cases). 

For any Hilbert space projector EA(A)eN(A p) the certainly-yes and 
the certainly-no subspaces are defined respectively as follows: 

M,(E~(A)) .-: {0 ~ :  E~(A)~ = ~,} = {~ ~ e :  <~]E~(A)O > = II~ 17} 

Mo(EA(A)) := {~o ~ :  EA(A)~o = 0} = {~0 s ~ :  <~olEA(A)~0 > = 0} 

These certainty subspaces are identified with the certainly-yes and cer- 
tainly-no domains consisting of all preparation procedures with respect to 
which the experimental proposition (A, A), tested by the corresponding 
event EA(A), is true and false, respectively: 

S~(E~(A)),= {~ e ~ 0 :  P(0 ,  E~(A)) = l} - M , ( E ~ ( 6 ) )  

S0(E~ (A))..= {q~ e o~,~ P(~o, EA(A)) = 0} - M0(Ea(A)) 

Summarizing the Hilbert space approach to quantum logic, we have the 
scheme: 

Experimental 
proposition 

(A, A) e ~QM 
$ 

Physical quality Projection Subspace 
(property) (event) (proposition) 

Quoting Birkhoff and von Neumann (1936): "One can interpret as a 
physical quality the set of all experimental propositions (i.e., [(A, A)]_) 
logically equivalent to a given experimental proposition (i.e., (A, A)) [with 
respect to the equivalence relation (B,/~) = (A, A) iff EB(A) = EA (A)]. Thus 
subspaces of Hilbert space correspond one-many to experimental proposi- 
tions, but one-to-one to physical qualities in this sense." 

In conclusion, according to BvN approach to quantum logic, any 
experimental proposition (question which can be put to the physical entity) 
(A, A), or the associated property (physical quality of the entity) [(A, A)]__, 
is tested by the event (projector of the mathematical description) EA(A) 
giving rise to two propositions (subspaces of Hilbert space) M 1 (EA (A)) and 
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M0(EA(A)) = Mi(EA(A)) • identified with the set of all preparation proce- 
dures yielding with certainty the answers "yes" and "no" to the involved 
question, respectively. 

1.2. The Sentential Logic of Quantum Mechanics 

Making use of the connectives "and," "or," "not," it is possible to 
construct on the basis of elementary sentences r = (A, A1), s = (B, A2) . . . .  
the complex sentences "r & s," "r _o s," "-7 r" of the sentential logic •QM of 
quantum mechanics. This sentential logic has a structure 

LQM = (L~QM, &, o, -7, O, I )  

consisting of the set LfQM of all sentences generated by (and so closed with 
respect to) the connectives "and" &, "or" _o, "not" -~, starting from the set 
of all elementary sentences. For instance, the sentence "the particle has passed 
through the slit 1 or through the slit 2," can be described by a complex 
sentence of the form "(Q, A l) o (Q, A2)." As another example, let us consider 
a system consisting of two separated particles ( 1 + 2); the statement "the spin 
of particle 1 along the z direction is "up" in region A~ and the spin of particle 
2 along the x direction is "down" in region A2" is described by a complex 
sentence of the form ,,r~(l) A t ,&  (S~2), A~)." Among these elementary k~'z , z--Xl) 

sentences we have two privileged sentences: the absurd one O, false in every 
semantical world, and the certain one L true in every semantical world. 

In agreement with Birkhoff and yon Neumann (1936): "One can 
reasonably expect to find a calculus of propositions [of quantum mechanics] 
which is formally indistinguishable from the calculus of linear subspaces 
[of a Hilbert space] with respect to set products (Ml ~M2), linear sums 
(Mj + M2), and orthogonal complements (M z ) - a n d  resembles the usual 
calculus of propositions with respect to and (r i & r2), or (r~ o r2), and not 
(-Tr)." 

To be precise, the set of all subspaces of ~ has a structure 

M ( , ~ )  = (~/(~) ,  ^ ,  v ,  l ,  {o}, ~ )  

of a complete lattice with respect to the usual set-theoretic inclusion _~; the 
set product is the lattice meet (M~ /x M2 = M~ c~ 3/2) and the linear sum is 
the lattice join (M1 v M2 = M~ + 3/2). This lattice is bounded by the trivial 
subspaces {_0} (the minimum element) and oug' (the maximum element) and 
is orthocomplemented by the mapping ~ associating to any subspace 
M ~ J { ( ~ )  the corresponding annihilator M • = {~o e24~ Vr ~M, 
(q5 [ r  = 0}edg(~) .  The lattice ~'(Jq') is orthomodular (or weakly dis- 
tributive). 

According to Birkhoff and yon Neumann (1936), "The set-theoretical 
product [i.e., MI(EA(A1))(3MI(EB(A2))] of any two mathematical repre- 
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sentatives [i.e., MI(Ea(A1) ) and MI(EB(A2))e~((~ ')]  of experimental 
propositions [i.e., (A,A~) and (B, A2)eAeQM ] concerning a quantum- 
mechanical system, is itself the mathematical representative of a proposi- 
tion [i.e., (A, A~) & (B, A2)]." Moreover, "the representative of the negative 
[i.e., ~ (A, A)] of any experimental proposition [i.e., (A, A)] is the orthogo- 
nal complement [i.e., MI(EA(A~)) • of the mathematical representative of 
the proposition itself [i.e., M~(EA(A~))]." All this can be formalized intro- 
ducing a mapping called the simple valuation-mapping, 

v, : 5eQM ~, ~ ( ~ )  

associating to any elementary sentence (A, A), tested by the event E~(A), 
the simple proposition M~(EA(A)) (i.e., the set of all semantical world in 
which the sentence is true) in such a way that the following holds: 

Vs((A , A1) & (B, A2) ) =- MI(EA(AI) ) A MI(EB(A2))  

vs((A, A1) o_ (B, A2) ) = MI(EA(AI)) V M,(E~(A2) ) 

v~(-n(A, A)) = MI(EA(A)) ~- 

v,(O) = {_o} 

Let us notice that according to Birkhoff and von Neumann (1936), "By the 
negative [i.e., --a (A, A)] of any experimental proposition [i.e., (A, A)] ([char- 
acterized by the] subset A of [the] observation-space [of observable A]) is 
meant the experimental proposition [i.e., (A, AC)] corresponding to the 
set-complement [i.e., A c] of A in the same observation-space." All this can 
be generalized, for any fixed observable A e(9, by the following formaliza- 
tion, whatever be A, A m, A2~(~ ,~) :  

(A, 6,) & (A, A2):= (A, 6, ~A2) 

(A, A,) o_ (A, A2),= (A, A, uA2) 

(A, A):= (A, A9 

2. F R O M  EVENTS TO EFFECTS: N O N U S U A L  
O R T H O C O M P L E M E N T A T I O N S  IN THE P O S E T  OF EFFECTS 

We have seen that the set of all propositions (subspaces) of a Hilbert 
space is an orthomodular orthocomplemented complete lattice which is in 
a one-to-one correspondence with the set of all events (orthogonal projec- 
tions) on ~:C: the orthogonal projection E M is the mathematical representa- 
tive of the event which tests on preparations of the physical entity if 
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proposition M is either "true" or "false," or "indeterminate." The set of all 
events is an orthomodular orthocomplemented complete lattice, too: 

E ( ~ )  = < ~ ( ~ ) ,  ,',, v ,  ', ~, "~ > 

with respect to the partial order relation 

El<E2 iff V ~ 0 ~ ,  QplE~q~)<-(~o]E2~o) (2.1) 

The null operator, Vq~ e~t ~, | and the identity operator, V~0 ~Jt ~, 
1] (~o) = ~o, are both orthogonal projections describing the absurd and the 
certain events, respectively. The orthocomplementation mapping ': d~(Jt ~) 
g(~f)  associates to any E e g ( ~ )  the orthogonal projection 

E '  .'= 1] - E = [Ek~,.(~: ) (2.2) 

and is such that the following hold, whatever be E, El, E2~d~ 

(oc-1) E = E". 
(oc-2a) E{ A E;  = (E~ v E2)'. 
(oc-2b)  E~ v E l  = (E, A E2) ' .  
(oc-3a) E/x E '  = | 
(oc-3b) E v E '  = 1]. 

Condition (oc-1) is the algebraic counterpart of  the "double negation" law, 
(oc-2a,b) of the de Morgan's laws [which, under condition (oc-l), are 
mutually equivalent; moreover they are equivalent to the "contraposition" 
law: let EI,E2~N(S(F); then E1 <E2 implies Ez<E{], (oc-3a) of  the 
"noncontradiction," and (oc-3b) of the excluded middle law of negation. 

Since an operator E~g(Jg) is an event (i.e., an orthogonal projector) 
iff it is 

�9 linear, bounded, self-adjoint, and idempotent (E2=  E) 

one can enlarge the class of all events to the set of  all effects ~-(X/g): An 
operator F s ~ ( ~ )  is an effect (i.e., a generalized projector) iff it is 

�9 linear, bounded, self-adjoint, positive, and absorbing 

(0_< <r IFr _< iI ,ll =) 
Trivially, every event is an effect [d~(~,W)_c J(~ff)],  but there exist effects 
which are not events [�89 ~W(~)\g(~ir )]. The physical interpretation of 
events as yes -no  alternatives produced by macroscopic apparatuses in 
single tests with individual samples of the physical entity can be extended 
to effects. According to Kraus (1983), "Another empirical fact is the 
existence of  so called measuring instruments which are capable of undergo- 
ing macroscopically observable changes (effects) due to their interaction, 
with single microsystems ( ... ) One usually defines the result of a single 
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measurement to be 'yes' if the effect occurs and 'no'  if the effect does not 
occur." The probability of occurrence of  the effect F for the entity prepared 
in ~ is the number 

p(~k,r)..= []q/]l 2 ~[0,1] 

For  generalized quantum mechanics (GQM) based on the Hilbert space ,1: 
one generally means the triple ( J # o , ~ ' ( J : ) , p ) ,  which contains, as a 
particular substructure, standard quarltum mechanics (QM) described by 
the triple ( ~ o ,  g(gf) ,  p ) .  

The set of all effects of a Hilbert space has a structure 

F ( ~ )  = ( ~ ( ~ ) ,  - ,  ', ~, 0, ~) 

of a poset (which is not a lattice) with respect to the phenomenological 
partial order relation [VF1, F 2 ~ ( J : ) ]  

F t < - F  2 iff V(p~gf', (q) tFtrp)<(q)lFzq0) 
The restriction of this partial order relation to the set of all events g (a f )  is 
just the partial order relation (2.1). The standard orthocomplementation 
(2.2) is split into two kinds of nonusual orthocomplementations: 

1. The mapping ': ~(:~,:) w+ ~ ( ~ )  defined as 

F ' ,=~  - F  

which satisfies the conditions, whatever be F, G e ~ ( ~ ) '  

(doc-1) F = F". 
(doc-2) F < G implies G' <- F'.  
(re) F < F '  and G' <- G imply F -< G. 

2, The mapping ~: ~ - ( ~ )  ~ ~-(afr defined as 

F -  = ~Sker(F) 

which satisfies the conditions, whatever be F, G E ~ ( ~ ) :  

(woc-1) F < F - - .  
(woc-2) F < G implies G ~ < F~.  
(woc-3) F A F~ = 0. 

These two "orthocomplementations" are linked by the interconnection rule 
VF e ~-(Jt:)" 

(in) F - '  = F~ ~ 

Note that the following rules of standard orthocomplementation do not 
hold: noncontradiction (VF, F ^ F'  = | and excluded middle 
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(VF, F v F' = ~) for orthocomplementation 1, and excluded 
(VF. F v F -  = "0) for orthocomplementation 2. In particular, 

middle 

Moreover, orthocomplementation 2 does not satisfy the strong double 
negation law (VF, F = F - ) ,  since 

3. BROUWER-ZADEH (BZ) POSET 

A BZ structure is a poset in which two nonusual orthocomplementa- 
tion mappings are introduced in order to define an abstract environment in 
which some mathematical properties of effects on Hilbert space can be 
studied. 

A pre-BZ poser is a poset 

<z,0 ,  _< , ' , ->  

with respect to a partial order relation -<, lower bounded by 0 (hence 0 is 
the least element of  Z) and equipped with: 

(BZ-1) The Zadeh (or fuzzy-like) orthocomplementation mapping 
': Z ~ Z for which the following hold whatever be a, b eZ: 

(doc-1) a = a ' .  
(doc-2) a -< b implies b'  -< a'. 

(BZ-2) The Brouwer (or intuitionistic-like) orthocomplementation 
mapping ~: Z ~ Z for which the following hold whatever be a, bzZ:  

(woc-1) a -< a - -  
(woc-2) a < b implies b ~ -< a ~. 

(BZ-3) The two nonusual orthocomplementations must satisfy the 
interconnection rule whatever be a~Z:  

(in) a - '  = a ~ 

The greatest element of Z exists and it is 1 , = 0 ' = 0 - ( V a E Z ,  a-< 1). 
Trivially, a -  < a'. Elements h z Z  for which condition h = h'  holds, if they 
exist, are called half elements. 
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A BZ-poset is a pre-BZ poset in which the further conditions are 
satisfied: 

(re) a < a '  and b' <- b imply a < b. 
(woc-3) a /x a -  = 0. 

Under condition (re) there exists at most a ha/f element which, if it exists, 
will be denoted by (1/2)~Z. If  Z is a BZ lattice, condition (re) is equivalent 
to the following Kleene condition: 

(KL) Va, b~Z,  a /x  a '  -< b v b'. 

The elements of Z e.-= { f ~ Z : f = f - - }  are the exact (or sharp) elements of 
Z, whereas the elements of Z\Ee are the fuzzy (or  unsharp) elements 
(Cattaneo and Nistic6, 1989). Of course, 0, l~Ze. Moreover, for every 
f ~ X e , f ' = f ~ ~ X  e and the mapping f~Xe ~--~f'=f-~Ze is a standard or- 
thocomplementation in (Ee, 0. < ), so that (Ze, 0, ---, ' )  is an orthocom- 
plemented bounded poset. (If  Z is a lattice, then E e is a sublattice of Z in 
which f v eg = f v g  and f ^ e g  = f ^  g). The set ~ ( ~ )  of all effects 
(generalized projections) of a Hilbert space 9f ~ is a BZ poset whose family 
.~ , , (~)  of exact (sharp) elements is just the orthomodular lattice g(~eg) of 
all orthogonal projections on J r ;  fuzzy (unsharp) effects are thus general- 
ized projections which are not orthogonal. 

For  every a e Z, one can construct two exact elements combining the 
two orthocomplementation mappings a-'~]E e and a ' - ~ E  e allowing one to 
introduce the necessity mapping a t e  ~ v(a):=a'~ EZe and the possibility 
mapping a ~ Z ~-~ #(a).'= a - ' ~  Z e. In particular, the necessity of  an element 
"implies" the element itself, which in its turn "implies" the corresponding 
possibility Iv(a) -< a < #(a)]; necessity and possibility are both idempotent 
[v(v(a)) = v(a) and #(#(a))=/~(a)] and are linked by the expected inter- 
connection rules between modal-like operators #(a) = v(a')' [possibility = 
not-necessity-not] and v(a) = #(a ') '  [necessity = not-possibility-not]. An in- 
terconnection rule involving intuitionistic-like orthocomplementation and 
modal-like operators can be stated: v (a - )=  #(a)~ [in general, # ( a - )  
v(a) ~]. Operators v and p act on the exact elements of  )'~e as  the iden- 
tity operators, i.e. VfeZe, v ( f )  = # ( f )  = f [ h e n c e  Z~ = v(Z) = #(Z)]. Making 
use of the two unusual orthocomplementations, it is possible to introduce 
the weak anti-intuitionistic orthocomplementation a~Z ~--~ ab ,=a'~' ~Z~, 
which satisfies the following conditions: 

(aoc-l)  a bb <- a. 
(aoc-2) a < b implies b b < a b. 
(aoc-3) a v a t' = 1. 

Trivially, for every a EE, a ~ < a '  < a~; moreover, the following equalities 
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holds: ab=  v(a)'= v(a)~ = v(a) b (a b is the nonneeessity of a) and a - =  
#(a)' = #(a)~ = #(a) b ( a -  is the impossibility of a). 

We now introduce another intersting BZ structure. 

Definition 3.1. A pre-BZ* (resp., BZ*)poset is any pre-BZ (resp., BZ) 
poset which satisfies the condition: 

Va, b~Z, a < b  iffv(a) <v(b) a n d p ( a ) < p ( b ) .  

The necessity of an effect F e Y ( ~ )  is given by v(F) = ~ker(~ - F )  and 
the possibility by #(F) = ~;,er{r)- The BZ poset of all effects is not a BZ* 
poset, since ~ker(~-F) -< ~k~r(~-~) and ~ker(G) ~ ~ker(F) [i.e., ker(~ - F )  __ 
ker(~ - G) and ker(G) c ker(F)] in general do not imply F = G. Note that 
to every effect F it is possible to associate the modality pair 
([k~r(~- F), ~Ek~(F)), which is in a one-to-one correspondence with the ortho- 
pair of subspaces (ker(~ - F), ker(F)). 

The fuzzy orthocomplementation satisfies both the generalized de 
Morgan laws: 

(dM-ld) Let a, beZ;  i f a  v b exists in Z, then a '  ^ b' exists in Z, too, 
and a ' /~ b' = (a v b)'. 

(dM-2d) Let a, b~Z; i f a / ~  b exists in Z, then a '  v b' exists in Z, too, 
and a '  v b' = (a A b)'. 

The intuitionistic orthocomplementation generally satisfies only the first 
generalized de Morgan law. 

(dM-lw) Let a, b e Z ; i f a v b e x i s t s i n  Z, then a -  Ab ~ exists in Z, 
too, and a -  A b ~ = ( a  v b ) ~  

We conclude this section by introducing two other interesting BZ 
structures, which will be very interesting in the sequel in order to individu- 
ate some other algebraic counterpart of fuzzy-intuitionistic logics of quan- 
tum mechanics. 

Definition 3.2. A pre-de Morgan BZ (resp., de Morgan) poset is a 
pre-BZ (resp., BZ) poset in which the dual of the de Morgan law for the 
intuitionistic-like orthocomplementation holds: 

(dM-2w) Let a ,b~Z;  i f a ^ b  exists in Z, then a~ v b ~  exist in Z, 
too, and a~ v b ~ = ( a A b ) ~ .  

A three-valued pre-BZ (resp., three-valued BZ) poset or pre-BZ 3 (resp., 
BZ 3) poset is a de Morgan pre-BZ* (resp., BZ*) poset. 

In a finite-dimensional Hilbert space the set of all effects is always a de 
Morgan BZ poset, which is not a BZ 3 poset (since the set of all effects is 
never a BZ* poset); but it is possible to single out a nontrivial (i.e., 
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strictly enclosing the BZ poset of orthogonal projections) BZ* poset 
consisting of effects which is not de Morgan (Cattaneo and Giuntini, 1993). 

4. BZ 3 S T R U C T U R E S  IN HILBERT SPACE Q U A N T U M  
MECHANICS INDUCED BY PHYSICAL 
S E P A R A T I O N  R E L A T I O N S  

The notions of certainly-yes and certainly-no subspaces introduced on 
the set of orthogonal projections can be extended to the set of generalized 
projections: let F e  ~-(~/g); then 

M,(F) = {~b e J r :  F~b = ~b} = {~b eJe :  <~b I F~b> = 112} 
and 

Mo(F ) = {cp eJ/~: F~0 =_0} = {q~ear <~o I Fq~> =0} 

Therefore, we can introduce a mapping, called the extensional mapping, 
associating to any effect of quantum mechanics the pair consisting of the 
certainly-yes and the certainly-no subspaces; formally: 

ext: ~(~,uf) ~_~ j/g(j{) x Jr F--+(M,(F), Mo(F)) 

Note that M~(F)(• i.e., for any ~eM~(F) and any q~eMo(F), 
<@ Iqo> = 0. Taking into account all these results, in the sequel we are 
interested in considering as a proposition any pair (M~, Mo)eJg(~,vf) x 
Xg(acf) of mutually orthogonal subspaces of the Hilbert space, rather than 
a single subspace. Subspace Ms (resp., M0) is the certainly-yes (resp., no) 
domain of the proposition, i.e., the set of all semantical worlds in which the 
proposition is true (resp., false). The usual orthogonality relation on 
nonzero vectors of the Hilbert space Je  is a preclusivity (i.e., irreflexive and 
symmetrical) relation and then <Je0, 1> is an orthoframe (Dishkant, 1972; 
Dalla Chiara, 1986; Dalla Chiara and Giuntini, 1989; Cattaneo, 1992). We 
recall that this orthogonality relation can be equivalently stated as the 
following binary relation of physical separability of preparations by effects: 

@ l~o if 3FeZ(Jr) :  P ( ~ , F ) = I  and P(q~,F)=0 (4.1) 

In this section we introduce a generalization of this relation of physical 
separability according to the following: 

Definition 4.1. On the set J~0 of all nonzero vectors of the Hilbert 
space af:  For any fixed ~e[0, �89 the e-separation relation • is defined as 
follows: 

~,~i~@2 if 3FeZ(W): P(@, ,F )>I -E  and P(O2, F ) < E  (4.2a) 
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This separation relation satisfies the two conditions: 

(se-la) 01 • 02 implies 02 _1_~ 0i (symmetric). 

(se-2a) 01 "• 02 implies 01 ~ 02 (irreflexive). 

For any fixed e e[�89 1] the e-separation relation .• is defined as follows: 

1/11 "J-c 02 if[" 3 F e Z ( H ) \ { 2 ] :  )o~[e, 1 - e ]} :  
(4.2b) 

P(01, F)  -> 1 - e and P(02, F)  -< E 

This separation relation satisfies the two conditions (Cattaneo and Giun- 
tini, 1993): 

(se-lb) 01 "• 0~ implies 02 "• 01 (symmetric). 

(se-lb) 0! "• 0! and 02 "J-c 02 imply 01 "• 02 (regular). 

Therefore, Ve s[�89 1], the relation _1_~ of physical separation (of  prepa- 
rations by effects) is symmetric and regular, i.e., a regular paraconsistency 
relation, whereas VE ~[0, �89 the relation .• is symmetric and irreflexive (and 
so necessarily regular), i.e., a preclusivity (or orthogonality) relation. As 
mentioned by Dalla Chiara and Giuntini (1989), very important logics can 
be semantically characterized by Kripke frames F = (X, # ), where X is a 
nonempty set, the carrier space of F, and # is a binary relation on X (i.e., 
# _ X x X) which satisfies suitable conditions. In particular, we can quote 

paraconsistent quantum logics (PQL) for which # is symmetric; regular 
PQL (RPQL) for which # is symmetric and regular; and minimal quantum 
logics (MQL) for which # is symmetric and irreflexive. 

Let (X, # ) be a Kripke frame; then for any A ___ X let us define 

A # .'= {b ~X: Va~A, b #a}  

and let us put A # # = (A e) # and so on. A set A ~ X is said to be an exact 
(or #-closed) set iff A = A # #. The set of  all exact sets of  the frame (X, # )  
is denoted by J / (X,  #) . '={A c X: A = A ##}. The trivial subsets X # and 
X are elements of Jd(X, #) .  

Theorem 4.1. Let (X, # ) be a Kripke frame; then the structure 

(ZZ(X, #), _=, X #, );> 

of all #-closed subsets of X is a complete lattice with respect to the partial 
ordering _~ of  set-theoretic inclusion; in particular, for any family {A~ } of 
#-closed sets from JC/'(X, # ) :  

(i) The greatest lower bound (g.l.b.), written A Aj, exists and turns 
out to be the set-theoretic intersection ~ Aj = ~ Aj. 
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(ii) The least upper bound (1.u.b.), written V Aj, exists and V Aj = 
( U AJ) ~ #, which contains, and in general does not coincide with, 
the set-theoretic union. 

The behavior of the mapping 

~" ~ ( X , # ) ~ ( X , # ) ,  A - , A  # 

can be classified according to the following cases: 

(PQL) If  # is a paraconsistency relation, then # is a degenerate 
(fuzzy-like) orthocomplementation for J/g(X, #) ,  i.e. the following hold, 
whatever be A, B ~ I ( X ,  #) :  

(doc-i) A = A  #~. 
(doc-iia) B # ^ A ~ = (A v B) # 
(doc-iib) B # v A ~ = (A ^ B) # 

(RPQL) If  # is a regular paraconsistency relation then ~ is a Kleene 
orthocomplementation for Jg(X, #) ,  i.e. besides (doc-i) and (doc-iia, b), 
the following holds, whatever be A, BeJg(X, #) :  

(K1) A ^ A  # c_B # v B. 

(MQL) If  # is a preclusivity relation, then # is a standard orthocom- 
plementation for Jg(X, #) ,  i.e., besides (doc-i), (doc-ii), and (K1), the 
following hold, for every A ~ ( X ,  # ) :  

(oc-iii) A A A  # =Ac~A # =~5 and A v A  # =X.  
(a) X # = ~ .  

In the complete lattice structure with nonusual orthocomplementation 
(tit'(X, #) ,  ^ ,  v ,  #, X #, X),  elements of JC(X, # )  are also called simple 
propositions. Let (X, # )  be a Kripke frame; a pair p = (AT, AF) of subsets 
of X is said to be #-consistent iff Ar ( # )  Ae, i.e., VaeAr, VbeAF, a # b. 

Definition 4.2. A proposition is any #-consistent pair (At, AF) of 
simple propositions (i.e., #-closed sets). The set of all propositions over 
( X , # )  will be denoted by Lf(X,#):={(Ar ,  AF):Ar,  AF~#I (X ,# ) ,  
AT( #)AF}. The set Ar is the certainly-true domain of proposition p and 
the set Ar is the certainly-false domain. Sometimes i fp  is a proposition, we 
denote by At (p)  and AF(p) the certainly-true domain and the certainly- 
false domain associated with p, respectively. 

If xeAr(p) ,  then we say that the proposition p is true in the state 
(world) x, while if XEAF(p) , then the proposition is false in this state 
(world); if neither xeAr (p )  nor X~AF(p) , then in the state (world) x the 
proposition p is neither true nor false, that is, its value is indeterminate. The 
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two trivial propositions 0 = (X #, X) and 1 = (X, X ~) are the absurd or 
contradictory proposition and the certain or tautologous proposition, re- 
spectively. A proposition p is self-contradictory, or, simply, a contradiction, 
iff AT(p) = X #. 

Remark 1. Note that i fp  is a proposition, then AT(p) nAF(p)  ~ ~ if 
# is a paraconsistency or a regular paraconsistency relation, and 
AT(p) rnAF(p) = ~  (self-consistency condition) if # is a preclusivity 
relation. In general, AT(p) v AF(p) ~ X. 

Theorem 4.2. The set of  all propositions has a natural structure 
(L f (X ,#) ,  _E, •  0, 1) with respect to: 

1. The partial ordering 

pE_q iff Ar(p)~-AT(q) and AF(q)~AF(p)  

2. The fuzzy-like orthocomplementation: 

(AT. AF) J- = (AF, AT) 

3. The intuitionistic-like orthocomplementation: 

(AT, AF)~ = (AF, A~F ) 

Precisely, if # is a regular paraconsistency relation, then Lj.(X, #)  is 
a pre-BZ 3 complete lattice; whereas if # is a preclusivity relation, then 
Lf(X, # )  is a BZ 3 complete lattice. 

Ly(X, # )  is bounded by the minimum element 0 = (X ~, X) and the 
maximum element 1 = (X, X#).  In the RPQL case (X ~, X #) is one of  the 
possible half propositions; in the MQL case every half proposition coa- 
lesces in the unique half proposition 1/2 - ( ~ ,  .~). The g.l.b, and the 1.u.b. 

(J) (/) 
of any family of propositions {pj = (AT , Ar  ) : j eJ )  are given, respec- 
tively, by 

"-('~ AV )) AV ) , •), A (/)) A(;) V') n(A~,  = ( ~  V AV)), u(A = ( V ~ . T ,  ("] A 

The necessity and the possibility of a proposition (AT, AF) are, respec- 
tively, 

[~(AT, AF) = (AT, A~ ), <~(AT, AF) = (A~F, AF) 

Trivially, �9 AF) = --([~( --(AT, AF))) and [2(Ar, AF) = 
-(O(-(AT,  A~))). 

The structure 

(&(x,  #), n, u, =, ~, o, 1} 
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is called the ortho-pair BZ (or fuzzy-instuitionistic) propositional lattice on 
the frame (X, #). 

The set of all exact elements is 

L~(X, #) = {peLf(X, # ) : p  = ( p - ) - }  

= {(A, A*):  A ~ ( X ,  #)} 

The restrictions to Le(X, #) of the two orthocomplementations defined on 
Lf(X, # )  coalesce and define a unique orthocomplementation; moreover, 
the following is a one-to-one correspondence between exact propositions 
and simple propositions: 

Le(X, #) = #//[(X, #) 

(A,A#)~-+A 

which allows the identification of the orthocomplemented lattice structures 

{L~(X, #), n, u, ~, O, 1) - {~(X,  #),  / , ,  v ,  #, X*, X} 

For any family) of propositions {pj= (A~),A~ )} the proposition lIp~..= 
( 0  A~ ), 0 A(J ) i s  well defined and it is called the "product" of these 
propositions. 

4.1. Kripkian Frames and Ortho-Pair BZ Propositional Lattice in 
Hilbert Space GQM 

In the case of GQM based on the Hilbert space ~ one can introduce 
the c certainly-yes domain of an effect Fs~-(J~r ~) as the subset of ~ o ,  
MI,~(F) == {0 ~Jt%: P(0, F) >-- 1 - e } ,  and the c certainly-no domain of the 
same effect as Mo,c(F).'={~0eH0: P(~o, F) < c}. Trivially, MI,c(F) (_1_~) 
Mo,c(F). Let us denote the corresPonding l~ closures (which are c simple 
propositions) as Mr, c(F) "-l~/t.-v,.1,o~• and MF,~(F),=(Mo,~)&I~; then 
MI,~(F) c_ MT,~(F) and Mo,~(F) c_ MF,~(F), with MT,~(F) ( • MF,~(F). 

The Hilbert space case can be summarized by the following diagram: 

Effect G-Proposition 
e x t  c 

F e ~ ( N )  , (MI,~(F), Mo,~(F)) 

(Mr,~ (F), MF, c (F)) 
BZ-Proposition 

with respect to which we have that, Vc ~[0, �89 MI,~(F) ( i r  Mo,~(F) implies 
M,,~(F) C~Mo,~(F)=~ and Ve~[�89 M~,~(F) (L~) Mo,~(F ) implies 
M~.~(F) ~Mo,c(F ) ~ (25. Preparations from Mr,~(F)\MI,~(F) [resp., 
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MF.c(F)\Mo.~ (F)] can be considered semantical worlds in which statements 
associated to effect F are e-true [resp., c-false] without the conditions that 
the probability is -> (1 - E) [resp. -< el. 

The behavior of Hilbertian propositions associated to effects is given 
by 

1 Yr (-I-1) 

c2 Mv,~2(F) (-L~ 2) MF,~2(F) 

V UI UI 
el Mr,~F (F) ( _l_c, ) MF,~, (F) 

V UI UI 

0 M, (F) (J_o) M o (F) 

5. LANGUAGE ASSOCIATED TO UNSHARP REALIZATION 
OF HILBERTIAN SHARP OBSERVABLES AND 
FUZZY-INTUITIONISTIC QUANTUM LOGICS 

In Hilbert space quantum mechanics any real-value observable A ~(9 is 
(sharply) described by a projection-valued (PV) measure on real Borel sets 
EA:~(N)  ~ g(Yf), which, via the spectral theorem, is in a one-to-one 
correspondence with a self-adjoint densely defined (in general unbounded) 
operator A : ~ j  ~--~ ~,~. An exact question is any pair (A,A)e(9 x ~ ( ~ )  
describing the elementary statement of the everyday language: "a measure- 
ment of the physical quantity A gives a value contained in the set A of real 
numbers;" this question is sharply tested by the exact yes-no measurement 
device EA(A) (the same yes-no device can test several different exact 
questions). 

Let ~0 be any preparation and let A be any observable. Let P~o: 
g ( ~ )  ~-* [0, 1] be the probability measure (on exact effects) defined for 
every E ~ g ( ~ )  by p~(E)'.=p(q), E). The mapping #~o.A:N'(~) ~ [0, 1] 
defined for every Ae~'(N) by 

#~o,A (A) = P(q), EA(A)) = fa X'zx d(p~o EA) o 

is a probability measure on real Borel sets, wt~ere ZA (=1  if 2~A and 0 
otherwise) is the characteristic functional of A; L~ is interpreted as the sharp 
macroscopic localization device of the "window" that isolates the numerical 
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subset A in the reading scale of the apparatus testing the observable A. In 
particular, via the spectral theorem, the exact effect EA(A) is implicitly 
defined by 

%~0 I E ~ ( A ) 9 )  = 119 II=p(9, EA(A)) = 119 fl 2 XA d(p~ o EA) 

and the self-adjoint operator .~ by 

(9  [A9)  = 119[I 2 .faid d(p~o EA) 

A concrete macroscopic localization device is any mapping co: ~)(E)•  
E~--,[O, 1] such that for any fixed x~E, COx:~3(E) ~--+[0, 1 ] is a Borel 
measure and for any fixed A ~ ( ~ ) ,  COa: E ~ [0, 1] is a Borel measurable 
function. An co-unsharp realization of the observable A is the effect-valued 
(EV) measure F] :  ~(R) ~ @ ( ~ )  implicitly defined for every Ae~'(E) by 

:= 119 II 2 j~ coa d(p~o EA) (9 

Moreover, for the vectors for which the r.h.s, is defined, a "self-adjoint" 
operator A ~ is implicitly defined by 

/ I  

QP I A~~ = 119112 .Lid d(p~o F'~) 

A formal language for the concrete realization of observables now 
considered will consist of elementary sentences corresponding to questions 
(A, A, co) : "a measurement of the physical quantity A gives a real value in A 
when the latter is realized by the concrete localization device co." Any 
question (A, A, co) is tested by the corresponding effect F](A) and its 
c-semantics will be characterized by the e-extension ext~(F](A)), i.e., by the 
e-preclusivity proposition (Mr.~(F](A)), MF.~(F](A))). Further, our lan- 
guage will allow the use of the connectives "and" (&), "or" (o), "not" (-1), 
"impossible" (~), "necessary" (L), and "possible" (M) to obtain complex 
sentences from the elementary ones. These connectives could be described 
in the Hilbertian e ortho-pair (fuzzy-intuitionistic, BZ) propositional lattice 
Lr(X(~ ,  _k~)) by the operations n, u, ', ~, [Z, and ~ ,  respectively. 

All this leads to the conclusion that, from the logical point of view, it 
is interesting to consider languages equipped with this connectives and 
realized in terms of several kinds of BZ structures. Analogously to BZ 
posets, a characteristic feature of these logics, which represent nonstandard 
versions of quantum logic, is a splitting of the connective "not" into two 
forms of negation: a fuzzy-like negation that gives rise to a paraconsistent 
behavior, and an intuitionistic-like negation. We will consider three forms 
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of fuzzy intuitionistic quantum logics: B Z L  (weak Brouwer-Zadeh),  B Z L  3 
(three-valued Brouwer-Zadeh),  and B Z L  ~176 (infinite-valued Brouwer-  
Zadeh logic). These logics have a common language, which contains a 
denumerable set p~ . . . .  , p , , , . . .  of  sentential letters and the following 
primitive connectives: -7 (fuzzy-like negation), ~ (intuitionistic-like nega- 
tion), and & (conjunction). A privileged sentential letter O will represent 
the absurd assertion. We will use p, q, r . . . .  as metavariables for atomic 
formulas and ~,/3, 7 . . . .  as metavariables for formulas. Disjunction (o__) is 
metatheoretically defined in terms of conjunction and of the fuzzy nega- 
tion: ~ _o /3 ,= -q ( -q ~ &-i/3).  The modal operators L (necessarily) and M 
(possibly) are metatheoretically defined in terms of the two negations 
L~ := ~--qc~ and M~..= ~L-qcc  Another privileged sentential letter, the 
certain assertion (I), is metatheoretically defied as I . .=-nO. This language 
is described by 

LGOM := <s &, __0, --], ~ ,  O, I>  

6. WEAK B R O U W E R - Z A D E H  LOGIC 

A natural semantical characterization for the weakest BZL can be 
given in the framework of  an algebraic semantics (from now on, we take 
into account only BZ structures, disregarding pre-BZ ones). 

Definition 6.1. A BZL-algebraic realization is a pair ~ =  <Z, v>, 
where 

<Z, A, v , ' ,  - , 0 ,  1> 

is a B Z  lattice and v is a valuation mapping which maps formulas into 
elements of Z according to the following conditions: 

v(/3 & 7) = v(/3) A v(7) 

n ( - ~ / 3 )  = v(/3)'  

v( - / 3 )  = v(/3) 

v(O)  = 0 

Trivially, from these conditions it follows that 

v(/3 o 7) = v(/3) v v(7) 

v(z)  = 1 

Moreover, v(Lfl) = v(v(/3)) and v(m/3) =/a(v(fl)). 
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Definition 6.2. Truth, consequence, logical consequence: 

6.2.1, A formula ~ is'true in a BZL-realization ~JJ~(written ~ )  iff 
v(cQ = 1. 

6.2.2. ~ is a consequence in 93l of a set of formulas T (T ~ :Q iff 
V a s e  [Vfl s T(a <-v(fl) implies a -< v(a))]. 

6.2.3. ~ is a BZL logical consequence of T (T ~SZL Ct) iff for any 
BZL-algebraic realization J///, T ~ ~. 

A Kripke-semantics for BZL was first proposed in Giuntini (1990). A 
characteristic feature of this semantics is the use of Kripke-frames with two 
preclusivity relations. One can prove, with standard techniques, that the 
algebraic and the Kripke-semantics for BZL characterize the same logic. 
BZL can be axiomatized: a soundness and a completeness theorem are 
provable, with respect to both semantics (Giuntini, 1990). Moreover, BZL 
has the finite model property and accordingly is decidable (Giuntini, 1992b). 

Characteristic logical properties that fail and hold in BZL are the 
following: 

(a) As in paraconsistent quantum logic (Dalla Chiara and Giuntini, 
1989), the distributive principles, the strong and weak Duns Scoto princi- 
ples, the noncontradiction, and the excluded middle principles break down 
for the fuzzy negation. 

(b) As in intuitionistic logic, we have 

~ ~ B Z L ~ ;  i f ~ B Z L f i ,  then ~ f l ~ B Z L ~ ~  

(C) Moreover, we have 

(d) The modal operators give rise to an Ss-like behavior: 

Lc~ ~BZL ~; L(~ • fl) ~BZL Lc~ & Lfl; Lc~ & Lfl ~BZL L(c~ & fl) 

M(c~ & fi) ~BZL M~ & Mfl; L~ ~BZL LL~; Mc~ ~BZL LM~ 

if ~BZL~, then ~=BzLL~ 

7. A SEMANTICS WITH POSITIVE AND NEGATIVE 
CERTAINTY DOMAINS 

An alternative semantical description for a form of fuzzy intuitionistic 
logic was first proposed in Cattaneo and Nistic6 (1989). The intuitive idea 
underlying this semantics (founded on the generalization of simple proposi- 
tions in a Hilbert space outlined in Section 4) can be sketched as follows: 
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one supposes that interpreting a language means essentially associating to 
any sentence two domains of certainty: the domain of  situations where the 
sentence certainly holds, and the domain of  situations where the sentence 
certainly does not hold. Similarly to Kripke-semantics, the situations we 
are referring to can be thought of as kinds of  possible worlds. However, 
differently from the standard Kripkean behavior, the positive domain of  a 
given sentence does not generally determine the negative domain of  the 
same sentence. As a consequence, propositions are here identified with 
particular pairs of sets of  worlds, rather than with particular sets of  worlds 
(as happens in the usual possible worlds semantics). 

Let us again assume the BZL language. We will define the notion of 
realization with positive and negative certainty domains (briefly, ortho-pair 
realization) for a BZL language. 

Definition 7.1. An ortho-pair realization is a system 3~ = <X, # ,  L, v>, 
where: 

7.1.1. (X, # )  is a preclusivity space. 

According to Section 4, a simple proposition is a set of  worlds A such that 
A = A # #. We recall that a possible proposition of  the preclusivity space is 
any pair (Ar, AF), where Ar, A F are simple propositions such that 
AT ~ A ~F. The following operations and relations are defined on the set of  
all propositions: 

The order-relation: 

(AT, AF)E_ (BT, BF) iff Arc_Br  and BFC_AF 

The fuzzy complement: 

--(AT, AF) = (AF, Ar) 

The intuitionistic complement: 

"~(AT, AF) = (AF, A~F ) 

The propositional conjunction: 

(AT, AF) Fq(BT, BF) = (AT(~BT, A F v BF) 

The propositional disjunction: 

(AT, Mr) U(BT, BF) = (A v v BT, AF~BF)  

The necessity operator: 

[]](AT, ME) = (A r, A ~ ) 

The possibility operator: 

r AF ) = (A ~F , AF ) 
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The impossible proposition : 

O= ( ~ ,  X) 

The certain proposition: 

1 = (x ,  fg) 

7.1.2. L (the set of the actual propositions) is a set of possible 
propositions from L/.(x, #)  which contains 0 and is closed under - ,  ~ ,  n. 

7.1.3. v is a valuation mapping that maps formulas into propositions 
according to the following conditions: 

v (  ~ / ~ )  = - ~ ( f l )  

v (  ~ f l)  = ~ v ( ~ )  

v ( o )  = o 

The other basic semantical definitions are as in the algebraic semantics. 
One can show that in any ortho-pair realization the set of propositions 

L gives rise to a BZ lattice (see Section 4). As a consequence, one 
immediately proves a soundness theorem with respect to the ortho-pair 
semantics. One might guess that the ortho-pair semantics characterizes the 
logic BZL. However, this conjecture has a negative answer. As a counter- 
example, let us consider an instance of the fuzzy excluded middle and an in- 
stance of the intuitionistic excluded middle applied to the same formula a: 

c~o --n~ and ~o  ~ 

One can easily check that they are logically equivalent in the ortho-pair 
semantics. Indeed, for any ortho-pair realization •: 

~o  -n~ ~ o  ~~  and ~_o ~ ~ c~_o -~c~ 

However, generally, 

For  instance, let us consider the following BZL-realization 9Jl = (E, v}, 
where the support E of 9)l is the real interval [0, 1] equipped with the usual 
order of real numbers and algebraic structure defined as follows: 

a'= l - a  

~ {10 i f a = O  
a -- otherwise 

1 = 1 ;  0 = 0  
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Let 0 < v ( p ) < l / 2 .  We will have v(p v ~ p ) = m a x ( v ( p ) , 0 ) = v ( p ) <  
1/2. But v(p v -ap) = max(v(p), 1 - v(p)) = 1 - v(p) > 1/2. Hence: 
v ( p  v ~ p)  < v ( p  V _np). 

As a consequence, the ortho-pair-semantics characterizes a logic 
stronger than BZL. We will call this logic BZL. 3 BZL 3 can be axiomatized 
and a completeness theorem can be proved with respect to the ortho-pair 
semantics (Giuntini, 1990). BZL 3 can be equivalently characterized by 
means of  an algebraic semantics based on the class of all BZ 3 lattices. 

8. INFINITE-VALUED BROUWER-ZADEH LOGIC 

In the ortho-pairs semantics, a proposition (At, AF) of an ortho- 
pair realization X =  {X, # ,  L, v)  can be thought of as a mapping 7r: 
{0, 1/2, 1} ~ ~ (X)  [where ~ (X)  is the power set of X] which satisfies the 
following conditions: 

(i) rc 1 = At.  
(ii) ~z 0 = A F. 

(iii) 7c~/2 = X\{Ar  wAg}. 

Accordingly, the ortho-pair semantics admits of a natural infinite general- 
ization by replacing the set {0, 1/2, 1} with the interval [0, 1]. 

Definition 8.1. An ortho-infinite many-valued realization is a system 
Y = (X, # ,  L, v) ,  where 

8.1.1. (X, #) is a preclusivity space. A possible proposition of  the 
preclusivity space is a mapping ~: [0, 1] ~ ~(Y) ,  r ~ r ,  which satisfies the 
following conditions: 

(a) 7c, and 7~ 0 are simple propositions of the preclusivity space. 
(b) ~, ___ (ZOo) #. 
(c) nrc~ns=(25, if r @s. 
(d) Vx~X, 3re[0,  1] such that xsn,..  

The following relations and operations can be defined on the set of  all 
possible propositions, whatever be the possible propositions ~, p: [0, 1] 
. r  

The order relation: 

~zEp if VxeX: xOz)<-x(p), where x ( r c )= r  iff xerc, 

The fuzzy-negation: 

= {x I = 1 - r}  
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The intuitionistic-negation : 

(n ~) ,  = no 

( n  ~)o = ( n o )  ~ 

(n ~)~ = (n')r \ ( n o ) *  

The propositional conjunction 

(n n p)~ = n, ^ p~ 

(n n P)o = ~o v p, 

if re{O, 1} 

(n np)r = {x 13a, b (xen . ,  xepb ,  and r = rain(a, b))}\{no v Po}, 

if re{O, 1} 

The propositional disjunction: 

( n u p h  = nl v Pl 

(n u P)o = no A p, 

(n .p)~ = {x  I 3a, b ( x~n . ,  x~pb,  and r = max(a, b ) ) } \ { n ,  v p , }  

if rq~{0, 1} 

i f  re{O,  1} 

r # O  

r e { o ,  1} 

The necessity operation: 

(v(n)),  = n, 

(v(n))o = (n , )  ~ 

(~(n))r = {x Ix(n)  = r } \ ( n , )  

The possibility operation: 

(#(n)) ,  = {no} # 

(#(n))o = (no) 

(~(n))r = nr \ ( (no )  r u no) 

The impossible proposition : 

(O)o = x 

(0)r= ~ if 

The certain proposition: 

1 = 0 '  

In the particular case of the orthoframe ( ~ o ,  L) based on the Hilbert space 
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~f~, any  effect F E Y ( ~ )  gives rise to a poss ible  p ropos i t i on  
~zF: [0, 1] ~-* "~(W0) which associates  to any r e [ 0 ,  1] the subset  o f  Wo.  

~z F ,= {~b a ~ o :  p(~b, F )  = r} =- {t) a ~ :  ( ~  I F 0  ) = r/1~ [I 2} 

8.1.2. L is defined as in the o r t h o - p a i r  semantics.  

One can show that  t h e  s t ructure  ( L ,  n, u, ', - ,  1, 0 )  is a BZ lattice. 

8.1.3. v is defined as in the o r t h o - p a i r  semantics .  

Let  BZL ~ be the logic which is charac te r ized  by  the class o f  all 
or tho- inf in i te  many-va lued  real izat ions.  One can p rove  tha t  

BZL c BZL ~ c BZL 3 

with respect  to the re la t ion o f  logical consequence. I f  we take  into account  
only  the no t ion  o f  logical truth, then one can prove  tha t  

BZL ~ BZL ~ but  BZL ~ = BZL 3 
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